Effects of journal writing on mathematics anxiety

Kevin J. Pelton
Rowan College of New Jersey

Follow this and additional works at: https://rdw.rowan.edu/etd
Part of the Science and Mathematics Education Commons

Recommended Citation

Pelton, Kevin J., "Effects of journal writing on mathematics anxiety" (1996). Theses and Dissertations. 2200.
https://rdw.rowan.edu/etd/2200

This Thesis is brought to you for free and open access by Rowan Digital Works. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of Rowan Digital Works. For more information, please contact graduateresearch@rowan.edu.

Effects of Jourral Writing on Mathematics Anxiety

by
Kevin J. Pelton

A Thesis
Submitted in partial fulfillment of the regdirenents of the Mascer of Arts Degree in the Gradugte Division of kowan College in Mathematics Ectucation
(1996)

Approved by
50hn sooy

Dace Approved $\frac{\text { May } 1996}{0}$

ABSTRACT

Kevin J. Pelton, Effects of Journal Writing on Mathemetics Arviety, 1996, Thesis Advisor: Johr Sooy, Mathematies Educarion.

The purpose of this study was to detemine the effects of journal writing on mathematics anxiety in developmentai algebra classes at the college level. Two classes of "Elementary Algebra, " comprised of twenty"three college level students, were used for this experiment. During the six week study, the experimental group, consisting of ten students, wrote in meth journals on various mathematics topics aseigned by the repearcher. The control group, consisting of thirteen students, did not keep a journal. Both groups were pretested and posttested using the Mathematics Anxiety Rating Scale for Adolescents. Independent t-tests were used to analyze the results. It was concluded that there was no significant difference in the levels of mathematics anxiety between the control group and the experimental group.

MINI-ABSTRACT

Kevin J. Pelton, Effects of Journal Writing on Mãhematics Anxiety, 1996, Thesis Advisor: John Sooy, Mathethtics Education.

The purpose of this study was to deternine the effects of journal writing on mathemetics anxiety in developmental algebra classes at the college level.

There was no significant difference in the levels of mathematics arxiety between the control group and the experimental group.

Table of Contents

Chapter 르ㄹㅜㅏ
I. Introduction to the Sewdy 1
Introanction 1
Statement of the Froblem 2
Significance of the Problem 2
Limitations 4
Definition of Terms 4
Procedures 5
iI. Related Research and Literature 7
Introduction 7
Reiated Research on Tournai Writing 7
Related Literature on Journal Writing 11
Related Research on Mathematics Anxiety 14
Related Literature on Mathematics Arxiety 18
III. Procedures 21
Introciuction 23
Population 21
Testing Instrments 22
Conducting the Study 23
IV. Analysis of Data 25
Introduction 25
Pre-Comparison of Academic Achieverment 25
Pre-test of Mathematics Anxiety 28
Journal Writing 28
Post-test of Mathematics Anxiety 30
V. Suputary, ConeIusions and Recommendations 32
Introduction 32
Summary of the Findings 32
Conclusions 33
Recommendations 34
Appendices
A. Mathematics Anxiety Rating Scale - A 35
B. Journal Topics 44
Bibliography 48

CHAPTER 1

Introduction to the Stucy

Introduction

In the spring of 1989 , the National Council of Teachers of Mathematics developed the Curriculuth and Evaluation Standards for school Mathemgtics. The council recommended that all math students should be encouraged to keep jouznals describing their mathematical experiences Since the Standards were releesed, a significant amount of research hes been conducted, which hes focused both on joummal writing and its effect on math achievement at the elementary, midale school. and high school levels. Studies have indicated that journal writing is the most effective method of using writing in the mathematics classroom to improve mathematical achievement (Grossman and Miller, 1993; Bugley and Galleniberger, 1992). Journals erihance student/teacher dialogue, indivicualize inscruction, build student self-esteem, and improve achievement in the math classroom (Olson and Deming, 1994).

Few research studies have been done on the effects of journāl writing with underprepared college stuadents. "It is well documented that the need for remediation in mathematics is the most common problem at public colleges and that the
number of college students who enroll in remedial mathematics classes has increased extensively over the past decade" (Ganguli, 1995). This study focuses on the effects of journal writing on mathematics anxiety in developmental algebra classes at the college level.

Statemant of the Problem

The purpose of this subdy is to determine the effects of journal writing on mathematics anxiety in gevelopmental algabra classes at the college level. The following hypothesis will be tested.
H_{o} : There is $n 0$ significant difference itn the level of mathematical anxiety bevween the control group and the experimental group.

Siqnificance of the Problern

Mathematics andiety has always beerl recognizeã as a serious problem in math education. Although researchers define it in a variety of ways, it refers to a feeling of dread that people have when thay try to understand and to mathematics (NCTM, 1954; Tobias, 1976). For years, studies have coneibtently shown us the relationship that exists between mathematics anxiety and mathematisal achievement. Higher
levels of mathematies anxiety are related to lower mathemacics achievement test scores (Bessant, 1995; Martinè, 1987; Richardson and Suinn, 1972).

Mathematice anxiety has also been linked to etudents' career decisions. Researchers have Found that many intellectually capable students avoid taking math courses in high school and college (Shodahl and Diers, 1984). "Math anxiety becomes a eritical factor in a students' educational decisions and may influence the students' ashievement of his of her career goals" (Betz, 1978). Research has continued to show us the importance of mathematica anxiety as a problem area, and the need to develop appropriate treatment methods.

This researcher has focused on the effects of journal writing on mathematics anxiety. Recent research nas demonstrated that strong writing skills improve perionmance in the mathematics classroom (Abel, 198g). Specificaily, studies have shown that the most effective method of using writing to help students learn mathematics is through the use of journals (Stuart and chance, 1995; Fecerson and Nahigang, 1986), But most of the research that has recently been conducted on journal writing hes focused on achievement in the elementery and high school levels. Additional research needs to be done on the effects of journal writing on mathematics anxiety in developnental math courses at the college level.

Limitations

This study was conducted at Camden County college, iocated in southmern New Jersey, over a six week period from November to December of 1995. Student enrollment is approximetely 15,000 students, comprised of a minority enrollment of 22 percent. Two classes of "Elementary Algebra" were used for this experiment. This was a total of 23 students out of a possible 1400 students that were enrolled in this course during the fall semester of 1995. The experimental group met at 8:00 a.m., and the control group thet at 12:00 p. [1.

DeEindtion of Terms

Control Group
those students in the Elementary Algebra class not subjected to the fournal writing sessions.

Exparimental Group

Lhose students in the Elementary Algebra class subjected to the journal writing sessions three times a week.

Journal.
a diary-like series of writing assignments. Each assignment or entry is a short written response to
an instructor's question, stacement, or set of instructions (Peterson and Nahigang, 1986).

MARS-A
a 98-item test specifically designed for adolescents to measure the degree of mathematics anxiety.

Mathematics Anxiety

feelings of tension and anciety that interiere with the manipulation of numbexs and the solving of mathematical problems in a wide variety of ordinary life and academic situations (Betz, 1978).

Procad나노

The population to be tested for this experiment was comprised of students from Camden County Ccllege. The sample used included two sections of "Elementary Algebra." Both of these classes were taught by the researcher for the entire 1995 İill semester. Each class mer three times per week for 50 minutes. The experimental group, which met at 8:00 a.m., was comprised of ter students. The control group, which met at 12:00 p.m., was comprised of thirteen students.

A mathematics anxiety pretest, the Mathematics Anxiety Ratings Scale fox Adolescents (Mars-A), was given to botin groups immediately following the mid-term examinations. During
the next six weeks, the experimental group wrote in meth journals on specific topics assigned by the researcher. At the conclusion of the spmestar, both classes completed the same MARS-A. The results from the posttest were then used to determine if there was a significant difference in the levels of mathematics anxiety hetween the control group and the experimental group. An independent t-test was used to analyze the results.

CHAPTER 2

Related Regearch and Literature

Introduction

When the Curriculum and Evaluation Standards Eor School Mathematics was released by the National Council of Teachers of Mathematics (NCTM) in 1989, journal writing began to receive an enormous amount of attantion. NCTM reconmended that "students should be encouraged to keep journals describing their mathentatical experiences, including reflections on their problem solving thought processes. . . These activities can foscer students' positive attitudes about mathematics. . ." (142). Since the release of the Standards, a Iarge amount of research and literature has been published on the potential bernefits of writing in the mathematics clessroon. Unfortunately, most of this has been limited to elementary, micdile school and high school students. This researcher will focus on the related research and literature on both journai Writing and mathematics anxiety at the college levei.

Related Research on Tournal Writing

Carolyn B. Stewart conducted a study at Memphis state

University in 1993 involving 110 oollege algebre stuagents. The purpose of this study was to examine the effects of joumnal writing on both methematical achievement as well as mathematical anxiety. Four algebra ciasses participated jin this study. Two classes wrote in journals daily the experimental group), two classes did not (the control group). Pretest and posttest scores from the Tennessee Compreherisive Assessment Program (TCAP) and the Mathematics Anxiety Rating Scale for Adolescents (MARS -A) were used to determine if there was a significant differenee in the levels of achievement and anxiety between the control group and the experimental group. The results from the TCAP acores found that "the jourral writing group's gains were significantly higher than the non-journal writing groups" (42). Although this study found that journal writing had a positive effect on mathematical achievement, the results indicated no significant dififerences in the revels of mathematical anxiety-

In 1991, a study was conductet at the University of Minmesota involving 25 college algebra students. During a 12wepk period, students were asked to complete in class writing assignments on a variety of math concepts as well as procedures for soiving problams. The researchers concluded that these journals helped remedial students think mathematically "The writing-to-learn-mathematios teaching strategy helped students not only to reexamine their mathematical understandings but also to apply previously
learned concepts to anelyzing new problems" (50). In addition، ail 25 students responded very positively when asked if chey thought that the witing assignments helped then to understand mathematics better. Ganguli concluded from these responses that additional research should be done to determine the effects that journal writing may have on mathematical anxiety. In 1993, one of the largest atudies ever done on journal writing at the college level was conducted at the University of Southerm Mississippi. Over 14 college algebra classes participated in this study over a 15 -week period. Half of the classes wrote in journals daily. The remaining students did not participate in any writing assignments. The purpose of this study was to look at the effects of journal writing on both mathematical achievement as well as mathematical aroxiety. Unlike many of the previous studies, thie one specifically focused on differences in achievenent and anxiety between male and female students. The researchers found thet there was a significant difference in the levels of mathematical anxiety beaween the control group and the experimental group involving the male students only. They found no significanc difference with the female students. The researchers concluded that at the college level, daily joumal writing is thore beneficial to male students than to Female students (216).

Frances Jo Grossman, Brenda Smith, and Cynthia Milier conducted a study at Georgia state University in 1993 involving 70 intermediate algebra college students. In
addition to keeping daily journals, students were given writing questions for homework and on im-claps givizaes and tests. During this 14-week period, writing about mathematical concepes became a regilar activity during class instruction and was presented as a part of the learning process (2). This study also focused on what effects journal writing would heve on mathematios arxiety. The reseaxchers concluded that "when students were given regular opportunities to participate in a dialogue with thair teacher through the jourrial, machematics anxiety was lessened" (4). The journals helped students buiid their gelf-esteem and pelf-confidence which plays a vital role in whe learning process.

In 1988, a study was conducted et Hofstra University by Kathleen SchatzberG-Smith. Sine felt that "príor researchers on dialogue journal writing traced the development of language and reasoning abilities in elementary scudents, but Ew researchert focused on college learners, none on underprepared students" (436). During this 15-week scudy, 38 college students exchanged dialoghe journals daily with cheir mathematics instructor. The researchers conciuded that journal writing appeared extremely promising for reducing levels of thathematics anxiety in underprepared college studencs.

Carolyn Stewart continued her research it Memphis state Undversisy in 1995. Her previous studies had linked journal writing to higher achievement, but could not show a statiscical relationship to decreasing mathematics anxiety. In
this study, students from four college algebra classes wrote in journals three times a wejk during the last five minutes of tine class. This time however, the teacher collected and responded to the journals each time. Using the MAkS -A, Stewart found that "similar tests performed on the changes-inanxiety scores suggested for dialogue journain-writing students a decrease in anxiety that aporoached signīicance" (93).

Related Literature on Journal Wziting

Wheh has been written on the numerous benefits of having students write in the mathematics alassroom. Writing has long been recognized as a valuable learning tool that helps to promote thinking (Abel, Davison and Pearce, Ganguli, Grossman, Wilde). Students who are reguired to write must do considerable thinking and organizing of their thoughts before they write (Johnson). In "Using Writing To Learn Mathematics," Nahrang and Peterson argue that writing ahould be used in all machematics classrooms to improve learning. It provides the student with the opportunity to formulate, organize, internalize, and evaluate concepts (461). Many educators woula agree that the most effective method of using writing to help students learn mathematios is through the use of math journals (Bagley and Gallenberger, NCTM, Olson, stewart and chance). "Our experience in college-level classes, from aigebre through calculus, makes us feel confident that these short but powerful writing exercises enhance learning" (Abl).

In "Assessing students' Dispositions: Using Joumale to Improve Students' Pexformance," Bagley and Gallenberger aiso discussed the meny benefits of using journals in the mathemetiss classroom. Journal writing allows students to:

1) participate by commuicating ideas, questione, or suggestions when they are too shy or intimidated to do so in front of the entire class.
2) write freely without concern about speling, punctuation, style and so on.
3) sumarize, organize, relate and aspociata ideas.
4) define, discuss or describe an idea or concept.
5) experiment with, create, or discover mathematics independently.
6) review topics.
7) reflect on class by summarizing goals, strategies, reactiøns, accomplishments, or frustrationa.
8) openly express positive and negative feelings and frustratione (6G1)

In their college classrooms, Bagley and Gallenberger falt that jpurnal writing encouraged their stucents to articulate their thoughts which helped them to better understand meny algebra concepts. "Our students learned to internalize and reflect on what we did in aigebra class: they learned to make connections, relace information, synthesize, organize tieir thoughts, and analyze" (462). The joumals helped the students to realize what they know and what they don't know.

Raffaella Borasi and Barabera Rose's "Journal Writing and Mathematics tintruttion" also addresses the many potential
benefits os having students write in math journals during class. In addition to increased learming of mathematical content, they found that journal writing helps seudents to increase their problem solving skills. It is a device that can greacly aid in the problem solving process and stimuate create thought by the students (Johnson). It helps to clarify the "process" as well as takes students aware of how they do mathematics. "By asking the students to report in their journals how they soived the problem or approached the study of a topic, they can become encouraged to become introspective of how they do and learn mathematics, and consegeantly to identify more general heuristics to solve mathematical problems as well as to realize the possibility of alternative approaches to the same learning task" (356).

One of the most obvious benefits of mathematical journals is the drastic increase in student/teacher interaction and dialogue (Abel, Bagley, Borasi, Ganguli, Grossman, Olson, Stewart). In n bialogoe Joumals: Barometers for Assessing Growth in Developmental Learners," James Oleon points out that it is almost impossible for instructors to give heavy, individualized instruction to afl of their students. Many students are top shy to ask questions or to meet pre-on-one with the ceacher, and journals provide the opportunity to bridge that gap of commuication. "The dialogue journal is individualized instruction par excellence. The private, thoughtful nature of the interaction allows students to
express ideas and ask questions that they would not heve in the oper elassroom" (27). Olson farther argued that journal writing should be used in all math classrooms because they heip to:

1) enhance student/teacher dialogue.
2) build students self esteem.
3) Give personal attention to students.
4) individualize instruction.
5) assese scudant perceptions of instruction.
6) adjust instruction as needed.
7) investigate metacognitive aspects of learning.
g) uncover "social and emotional baggage."
8) confront student learning problems (28).

Related Research on Mathematics Anxiecy

One of the largest studies ever done on mathematics anxiety at the coIlege level was conducted by Nancy Betz at Ohio State Jniversiey in 1978. Over 550 students in developmental algebra classes at ohio state participated in this study. Researchere concluded that a very high percentage of college students are math anxious, and that women reported significantly higher levels of mathematics anxiety than did men. In addition, researchers found a relationship between low math echievement and high anxiety, as well as the number of years in high schọl mach and mathematics arrxiety. Nancy Betz concluded that "the relatively high prevalence of math anxiety
in the coliege students studied strongly suggests the need both foz increased awareness of math arxiety as a potertial problem area and for the developmental of approprizte treatment methods" (447).

In the summer of 1995, a study was published in the Journal For Research in Mathematics by Kenneth Bessant. I73 students enrolled in introductory statisties courses at Brandon University in Manitoba participated in tie study. The researchers focused on the Mathematics Anxievy Ratings Scale (MARS) and specific types of anxieties and attitudes. They identified six factors Iabeled as General Evaluation Anxiety, Everyday Numerical Anxiety, Passjve Observation Anxiety, Performance Anxiety, Mathematios Test Anxiety, and Problem Solving Arxiety (327). The researchers concluded that "first and fortenost, mathematics anxiety is a miluidimensional concept" (342). Bessant recommended that further research should be done to perhaps expand the meaning of mathematics anxiety.

James Rounds and Darwin Hendel conducted an experiment at the University of Minnesota in 1980. 350 female students, all enrolied in a mathematics anxiety treatment program at the univeraity, were the subjects of the study. The zocus of the study was on tie reliabiiiuy of the Mathematics Anxiety Rating scale and whether it should be used in identifying mathanxious individuals and in evaluating treatment programs. The results were very similar to Kenneth Bessant's study. The
researchers concluded that mathematics arxiety as measurē̄ by the MARS is not a unidimensional construct (145). "The domain of mathematics anxiety by the MARs is best described not as anxiety about everyday numerical manipulation, but primarily as test anxiety and secondarily as amxiety associated with mathematics courses" (145). Researchers also concluded that mathematios anxiety is not limited to females but is common to all students who are poorly prepared in mathematios.

In 1969. Ralph Anttonen conducted a stuay at Western Reserve University in Cleveland, ohio. Over I.000 students participated in this study over a six-year period from 6ch grade to $12 t h$ grade. The purpose of this stugy was 50 establish a relationship between mathematics anxiety and mathematics achievement. The students were tested in the spring of 1960 , and were retested in the spring of 1966. The results elearly showed a strong relationship between high mathematical anxiaty and low mathematical achievement. They also recommended that "future studies could make an attempt to change students who have expressed "mathemaphobia" so that their attitudes toward mathematics would become more positive. This overcoming of "emotionat blocks" to mathematics would hopeŕully lead to better performance and great comfort in mathematics" (470).

In 1983, Robert Frary and Jeanne Ling conducted "A Factor-Analytic Study of Mathematics Anxiety" at the University of Virginia. This particular study colkected the
responses of over 500 university students foeusing on personaiity measures as well as mathematics anxiery. More specifically, the purpose of the study was to determine to what extent the attitudes towards mach could be viewed as reflections of ocher personality characteristics as opposed to a single underlying attitude (985). The researchers showed that "the results support viewing mathematics anxiety as a unidimensional and, unfortunately, rather globei oonstruct independent of the other personality variables and underlying other, more distinct attitudes towards mathematics" (992). Frary and Ling concluded that low ability leads to low gerformance which leads to mathematics arxiaty which leads to avoidance and low achievement.

In 2972, Frank Richardson and Richard Suinn, the creators of the Machematics Anxiety Rating Scale, concucted one of the most well known studies on mathematics anxiety. Over a00 Ereshmen and sophomores participated in this study at the University of Missouri. The researchers were concerned with analyzing aifferent types of mathematics anxiety as well as establishing the reliability of the MARS $-\dot{A}$. The researchers concludea that "mathematics anxiety is a very common problem in the college population and the MARS could serve as a diegnostic tool" (552). They also concluded that tine MARS could be used in research to determine the effectiveness of different treatment approaches to mathematical anxiety problems (552).

Reiated Litereture on Mathematics Arxiety

Mathematics anxiety has long been recognized as one of the most serious problems being faced in math education today. The relationship between high mathematics anxiety and low math achievement has been well documented and zesearched (Antonen, Bessant, Richardson and Suinn, Tobias, Wigfield and Meece) - In "Freventing Math Anxi立ty: A Prescription," Joseph Marininez argues that "marhematics anxiety may be a greater block to math learning than any supposed deficiencies in our school curricula or teacher preparation programs" (125). Џnfortunately, experts still do not fully understand why some students develop mathematical anxiety and others do not. Even when students are diagnosed with this disease, recovery seems to be marginal at best. (117)

Much of the literature axgues chat the math teacher plays the leading role in causing mathematical anxiety. In "My Anxieties About Math Anxiety," Jay Greenwood points out that "the principle cause of math anxiety lies in tine teaching methodologies used to convey the basic mathematical skills to our youngsters, be they computational skills or these involving algebra or geometry" (662). The traditional "explain-practice-memorize" teaching style, which is based entirely on memorization, not on understanding and reason, is the real source of mathematios anxiety. Greenwood argues that student h have misconceptions, as well as teethers and parents, Ehat you mist master the basic skills fusually througin rote
memorization before you can engage in higher level probiem solvinf - He concludes by recommending that additional research needs to be conducted on the benefits of using the problems solving process to teach computation skills.

Susan Shodahl and cleon Diers also believe that teachers play a significant role in causing math ancious students. In their article, "Math Anxiety in College Stucents: sources and Sclutions," they aiso identify five myths about methematics that help $i 0$ contribute to the problem of mathemetics ankiety.

1) There is only one way to do a problem.
2) You must be able to solve problems quickly in your head.
3) You must always know how you got the answer.
4) Math requires logic and not intuition.
5) Men are naturally betcer at math than women. (33) Shodahl and Diers believe that the best way to reduce mathematics anxiety in college students is through the use of intervention programs. They both taach a semester long course at San Eemadino Valley College called "Our Math Without Fear." This is a two-hour class that meets once a week which focuses on prychological techniques that help the students reduce their mathematics anxiecy.

In 1995, the National Council of Teachers of Mashematics published their own report on mathematics anciety. The council agreed with Martinez that the causes of mathemarics amaiety are still very much unknown. Although much of the literature points to the relationship between the student and the
teacher, many experts believe that the leading cause of mathematics anxiety can be linked to the relationsiip between the student and his or her parents (Tobias). NCTM does not provide reasons for the causes of mathemarical anxiety. The council is concerned with strategies to help reduce anxiecy. Although the council mentions math anxiety centers and intervention programs as one method of dealing with mathematical anxiety, they point out that very little research and literature exists about the long-term success of these programs. NGTM does provide a list of bpecific classroom practices that math teachers should use to alleviate mathematical anxiety from their classrooms. A few of thefe are listed below:

1) Accomodate different leaming styles.
2) Greate a variety of testing environments.
3) Emphasize that everybody makes mistakes.
4) Desigh the experience so that students feel positive about themselves.
5) Make math relevant.
6) Emphasize the importence of ariginal, quality thinking rather than the rote mapipulation of formulas.
7) Allow for different social approaches to learning mathematics.

CHAPTER 3

Procecures

Introduction

The purpope of chis study was to determine the effects of joumal writing on mathematics anxiety in developmental. algebra classes at the college level. This chapter will focus on the procedures uaed by the researcher to conduct this study. It will also provide a brief description of the student population and the testing instruments used throughout the experiment.

population

This study was conducted at Camden County College in Blackwood, New Jersey. Camden County College is an open-door, corprehensive two-Year public institution with an enrolment of over 25,000 students. It presencly ranks as the largess commonty college in the state of New Jersey. Minority enrollment comprises twenty-two percent of the total college population.

This study occurred during a eix week period in the fall semester of 1995. Two classes of "Elementary Algebra" were
used in the experiment. Each class met thres times a week for fifty minutes. The experimental group, which met at 8:00 A.M., was composed of ten students, six female and four male. The contral group, which met at $12: 00$ P.M., was composed of Ehirteen students, eight female and five male. All twentythree students that participated in the study had recentiy graduated from high school in either June af 2994 or 1995 . A variaty of ethnic groups wexe represented in both classes.

Testing Instruments

Mid-こerm examination grades were used to determine if the control group and the experimental group were equivalent in their academic achievement. The scores that the students achieved on this exam were used to determine if a significant differente exisced in their mean scores. An independent t-test was done for both classes using these scores.

Immediately foliowing the mid-term examinations, the Mathematics Anxiety Rating Scale for Adoleseents (MARS- A) was administered to both the experimental group and the concrol group. The MARs-A is a 98 item test specifically designed Eor adolescents to measure the degree of matinematics anxiety. A cogy of the MARS-A can be found in Appendix A. This scale wes used to determine if the control group and the experimental group were equivalent in their mathematical arriety. Although this researcher examined mạy different arxiety scales, numerous studies have shown that the MARS-A is a valid and
reliable measurement of mathematical anxiaty \{Richardson and Suint, Rounds and Hendell, Wigfield and Meece). Ir "Factors Associated With Types of Mathematics Anxiery in College Students." the National Council of Teachers of Mathemeties stated that "the MARS-A has proven an extrenely reliable measure of mathematics anxiety" (328). The scores that the studente achieved on the Mars-A were used to determine if a significant difference existed between the mean scores of the experimental group and the control group. An independent ttest was once again used for both classes using these scores.

Six weaks later, the MARS-A was re-administered to both groups on the final day of the experiment. The same procedure described above was once again used co determine if a sig̣nificant difference in the level of mathematics anxievy existed between the control group and the experimental group.

Condueting the study

During the course of the six week study, the experimental group was allowed time during each class to complete journal entries on assigned topics by the researcher. The first five minutes of class were provided to the students to complete these writing assignments. This time was also used for taking attendance and reviewing any homework problems that the diass may have had, Since the control group was involved in thase same procedures (other than journal writingl, the time allotted for the daily presentation of lessons was
approximately the same for both classes.
The specific joumal writing assignments were based on a wide variezy of mathematical topics. students were asked to respona to problem solving questions, concepts learned from previous lessons, as well as any feelings, emotions or aroiecias they may have toward mathematics. A inst of these topics can be found in Appendix B. Aftar the students completed each essignment, the journals were then collected by the researcher. In adaition, the researcher responded to each written assignment to establish a "dialogue-journal" with each student. No grades were given for these aseignments.

CHAPTER 4

Analysis of Data

Introduction

The purpose of this study was to decemine the eẋects of journal writing on machematios anxiety in developmertal algebra classes at the college level. Two alasses of "glementary Algebra" were used for this experiment. The researcher taught both the experimental group, consisting of ten students, and the control group, consisting of thirteen students.

Pre-Comparison of Academic Achievement

The first procedure performed was to ensure that the concrol group and the experimental group were equivalent in their academic achievement. The acores on a mathematics department mid-term examination were used for this task. The mean score for the ten students in the experimental group was 78.4. The mean score for the thirteen students in the control group was 77.85 (refer to Table 1). The standard devietion was 3A. 849 for the experimental group and 13.101 for the control group. Given 21 degrees of freedom, the trvalue at the . 05
level oi significance for a two-tailed test wes found to be 2.08. Since the t-value for the experiment does not fall in the rejection region $(-2.08<.094 \leqslant 2.09)$, the researcher concluded that there was no significant difference in academic achievement betweer the control group and the experimental group

Table 1
A Comparison of Mid-Term Examination Gradies Between Experimental Group and Control Grouk

Experimental Groups
$x_{1} \quad\left(x_{1}-\bar{x}_{1}\right)^{2}$
x_{2}
$x_{2} \quad\left(X_{\underline{1}}-\bar{x}_{2}\right)^{2}$
Gontrol Groug

Therefore, $t=.094$

Dre-test of Mathematics Xrxiety

The next procedure performed was to ensure that the concrol group and the experimentag group were equivalent in むheir mathemarics anciety. During the class immediately following the mid-term examinations, the Methematics Anxicty Rating Scale for Adolescents (MARS-A) was administered to both the experimental group and the control group (refer to Appendix A). The mean score for the ten students in the experimental group was 175.8. The mean soore for the thirteen students in the concrol group was 211.46 (refer to Table 2). The standard deviation was 55.689 for the experimental group and 37.733 for the control group. Given 21 degrees of freedom, the t-value at the .05 level of significance for a two-tailed test was found to be 2.08. Since the t-value for the experiment doee not fall in the rejection region (-2.08 \& -1.832 \& 2.08), the researcher concluded that there was no significant difference in the levels of mathematics anxiety between the control group and the experimental group.

Sournal Writing

During the six weeks following the adminiotration of the MARS-A pre-test, the experimental group was allowed time during each class to complete journai entries on topios assigned by the researcher (refer to Appendix B). The first Eive minutes of class were provided to the students to oomplete these writing assignments. This time was also used

Table 2
A Comparison of MARS-A Pre-test Scores Becween Experimental Group and

Control Group

Experimental Groups
$x_{2} \quad\left(x_{1}-\bar{x}_{2}\right)^{2}$

110
236
220
261
109
136
148
140
227
171
4329.64
3624.04
1953.64
7259.04
4462.24

158 2. 04
772.84
1281.64
2621.44
23.04

Control Group
$x_{2} \quad\left(x_{2}-\bar{x}_{2}\right)^{2}$

路
for taking attendance and addressing any difficultiee that the class may have had with homework problems. Since the control group was involved in these same procedures, the time allotted for the daily presentation of lessons was approximately the same for both classes. After the ten suudents in the experimental group completed each writing assignment, the journals were then coilected by the researcher. The researcher also respondea to anch entry to establish a "dialogue-journal" with each student.

Post-test of Mathematics Anxiety

On the last day of the experiment, the Mathematics Anxiesy Rating scale for Adolescents (MARS-A) was readministered to both the experimental group and the control group. The mean score for the ten students in the experimental group was 265.4. The mean score for the thirteen students in the control group was 193.38 (refer to Table 3). The standard deviation was 59.37 for the experimental group and 57.15 for the control group. Given 21 degrees of freedom, the t-value at the .05 level of significance for a two-tailed test was found to be 2.03. Since the t-value for the experiment does not fail in the rejection region $(-2.08<-1.14<2.08)$, the reseaxcier concluded that there was no significant difference in the levels of mathematics anxiety between the control group and the experimental group.

Table 3
A Comparison of MARS-A Dost-test Scores Becween Experimental Group and Control Group

Experimental Groups		Contral Group	
X_{1}	$\left(\mathrm{X}_{1}-\bar{X}_{1}\right)^{2}$	x_{2}	$\left(x_{2}-\bar{x}_{2}\right)^{2}$
114	2641.96	229	1268.78
225	3552.16	159	1181.96
244	6177.96	1.21	5238.86
247	6658.56	156	1397.26
113	2745.76	256	3921.26
103	3693.76	193	. 14
131	1183.36	332	-9215-50
113	2745.76	220	708.62
210	1989.16	183	107.74
154	129.96	173	425.34
		209	243.98
		134	3525.98
		149	2969.58
$\bar{X}_{1}=165.4$			93.38
$s_{2}=59.37$		$5_{2}=57.15$	
$=$	$\frac{\bar{x}_{1}-\bar{x}_{2}}{\left./ n_{1}\right)+(1 / n}$	where $S_{p}=58.11$	

Therefore, $t=-1.14$

CHAPTER 5

Summary, Conclusions, and kedommendations

Introcinction

The purpose of this geudy was to determine the effects of journal writing on mathematics anxiety in developmental algebra classes at the college lovel. The axperiment was conducted at Gamden Councy College in Blackwood, New Jersey during the fall semester of 1995. Two sections of "Elementary Algebra" were used for the study and both chepses were Eaught by the reesearther. The experimental group, comprised of ten studmnts, wrote in mıth journals on specific topics asBignedi by the resebreher . The control group, comprised of thirteen students, was not required to write in the jourmal. The nypothesis to be tested was to determine if there was a significant difference in the levels of mathematics anxiety betweer the control group and the experimental gromp.

Summary of the Findings

A pre-comparison was mabe of the mid-term examinetion grades of the control group and the experimental group to ensure that both groups were equivalent in their academic
achievement. The mean score of the control group wis 77.85. The mean scove of the experimental group was 78.4. Statistically, there was no significant difference between these two means.

A pre-comparison was also made of the scores on the MARsA pre-test of the concrol group and the experimental group $=0$ ensure that both groups were equivalent in their mathematics anxiety. The mean score of the control group was 211.46. The mean score of the experimentual group was 175.8 . Statistically, there was no significant difference between these two means. Aftar six weeks of writing in math journals, the Mars-a was re-administered to both the experimental group and the control group. The mean score of the control group was 193.38. The mean score of the experimental group was 165.4. Statistically, there was no significant difference between these two means.

Conclusions

Since the Matheratics Anxiery Rating Scale for Adolescents (Mars-A) post-test scores did not indicate a statistically significant difference in the mean scores of the control group and the experimental group, a conciusion can be drewn that journal writing does not improve mathematics anxiety in gevelopmental algebra classes at the college level.

Recommendations

The last journal topic that the researcher asaigned to the students wes to express their feelings and attitudes about the journal writing process. Ail of the joumal entries were very positive. Some students even wrote that writing in the journal was their favorite part of the class. Although not statistically evident in this experiment, this researcher feels that journal writing did have a positive effect on mathematics anxiety. Additional research should be done on the positive effects of journal writing.

Future experiments should involve a larger sample of grudencs and should be conducted over a longer period of time. Researchers should also be aware of the attendance problems that exist in developmental math classes at the college lavel. In addition to the poor attendance rate of the scudents in the experiment, fifteen students dropped out of the study during the sin week period. This researcher also recommends that future experiments use a test other than the MARS-A to measure mathematics anxiecy. During the re-administering of the MarsA. some students seemed to have a very negative attitude about completing the 98 -item tegt all over again. Many students filled it out very quickly and obviously did not give it much thougnt.

Appendix A

Mathenteics Anxiety Rating scale - A
\qquad

MATHEMATICS aNXIETY RATING SCALE (MARS-A)

The items in the questionaire refer to things and experiences that may cause tension or apprehension. For each item, place a check (γ) in the circle under the column that describes how much you would be made anxious by it. Work quickly, but be sure to think about each item.

How anxious...	Not at	$\begin{gathered} \text { A } \\ \text { Litcle } \end{gathered}$	A fair anduat	Much	Very muck
1. Deciding how much change you should get back from buying several items.	0	0	0	0	0
2. Having someone watch you as you add up a column of numbers.	0	0	\bigcirc	0	O
3. Having someone watch you as you divide a five digit number by a two digit number.	0	O	0	O*	0
4. Being asked to add up $976+777$ in your head.	0	0	O	0	0
5. Adding up $976+777$ on paper.	0	0	0	0	0
6. Figuring our a simple percentage, like the sales tax on something you buy.	0	0	0	0	0

7. Figuring out how much you will get paid for $61 / 2$ hours of work if you get paid $\$ 3.75$ an hour.
8. Listering to a person explain how your share of expenses on a trip was figured out (including meals, transportation, housing, etc.).

| 9. Counting a pile of change. | 0 | 0 | 0 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 10. Adding up a bill for a meal when you | 0 | 0 | 0 | 0 | 0 |
| think you have been over-charged. | | | | | |

11. Telling the cashier that you think the bill for the meal was wrong and watching the cashier add up the bill again.

12. Being asked to make change.	0	0	O	0	0
13. Adding up the dues received and the expenses for a club you belong to.	0	0	0	0	0
14. Reading a formula in a science class.	0	0	0	0	0
35. Doing a word problem in algebra.	0	0	0	0	0
16. Solving a problem such as: If $x=11$, and $y=3$, then the result of x / y is equal to \qquad ?	0	0	0	0	0
17. Solving the problem such as: If $x=12$, and $y=4$, then the ratio of x to y is equal to \qquad ?	0	0	0	O	0
18. Figuring out your grade average for last term.	0	0	0	O	0

19. Reading an article on the basketball tean, showing what percentage of free throws each player made, the percentage of field goals made, the total nomber attempted, etc.
20. Reading a novel with many dates in it,

0
0
$0 \quad 0$
0
21. Being asked to remember the telephone numbers of three people you met.
22. Being asked to guess at the number of people at a large gathering you are attending.
23. Receiving a math textbook.

How anxious

Not at	A	A fair		Very
all	Litle	amount	Much	much

24. Warching a teacher work an algebra problem on the blackboard

0
0
0
0
0
25. Figuring out whether you have enough change to pay for the gum and magazine you want to buy, plus the sales tax.

26.	Signing up for a math course.	O	0	0	0	0
27.	Listening to another student explain a math formula.	0	0	0	0	0
28.	Walking into a math class.	O	0	0	0	0
29.	Having to figure the miles per gallon of gas for a car.	\bigcirc	0	0	0	0
30.	Watching someone work with a calculator.	0	0	0	0	O
31.	Looking through the pages of a math text.	0	0	0	0	0
32.	Signing up for a course in Algebra.	\bigcirc	0	0	0	0
33.	Being called on to pur a problem on the board when you are not sure your answer is right.	0	0	0	0	0
34.	Studying for a math test.	\bigcirc	0	0	0	0
35.	Starting to tead a new chapter in a math book.	\bigcirc	0	\bigcirc	0	0
36.	Walking to class and thinking about a math course.	\bigcirc	0	\bigcirc	0	0
	Meering your math teacher while waiking in the hall.	0	0	0	0	\bigcirc
	Reading ine word "Statistics".	0	0	0	0	0

39. Sitting in a math class and waiting for the teacher to begin.
$\begin{array}{lllllll}\text { 40. Solving a square root problem. } & - & 0 & 0 & 0 & 0 & 0 \\ \text { 41. Signing up for a course in Geonetry. } & - & 0 & 0 & 0 & 0 & 0 \\ 0\end{array}$
42. Collecting money for admission tickets to a show or a game at the door.
43. Taking the math section of a standardized test, like an achievement test.
44. Measuring how much border to leave and how to place five pictures on a bulletin board.

45. Raising your hand in a math class to ask a question about something you do not understand.

46. Reading and interpreting graphs or charts.

00
47. Reading a cash register receipt after you buy something.

0
$0 \quad 0 \quad 0$
48. Figuring the sales tax for something that costs more than $\$ 1.00$.
49. Having to know how to balance a checkbook by adding up every amount that was spent and subtracting it from the amount you started with.
50. Figuring how you would make more money: by taking a iob that has a lower salary, but includes, room, meals, and travel; or a job thar has a higher salary, but no other benefits.
51. Having somed:e exphain b:nk interest rates while deseribing savir seccuunts.

How anyious	Not at all	A litule	A. fair ampunc	Much	Very much

52. Hearing a lecture in a social studies class where the teacher is commenting on some Egures, like the percentage of each socioecononic group who voted Republican.
53. Taking an examination (quiz) in a math course.
54. Taking an examination (final) in a math course.
55. Hearing two of your friends talking about the best way to figure out the actual cost of a product.
56. Having someone ask you to recheck the numbers in a simple calculation, such as division or addition.
$\begin{array}{lllll}0 & 0 & 0 & 0 & 0\end{array}$

-

57. Being asked by a friend to answer the question: "How long will it take to get to the state capital if I drive at 30 miles per hour?"
58. Studying for a driver's license test and memorizing the numbers involved, such as the distances it takes to stop a car going at different speeds.
59. Hearing friends quote the odds on a game as they make bets.
60. Playing cards where numbers are invoived tike poker or biackjack.
61. Hawing a friend try to teach you how to do a mash problem and finding that you cannot uncerstand what is being said.
62. Making a schedule for your dizily routine, setting aside times for classes, soudy time, meals, recreation. etc.

How antious... Notat A	Alfir	
all	lide amount Much much	

63. Learning the part of a game dealing with scoring and remembering numbers.

0
0
0
0
64. Deciding which courses to take in order to come out with enough credit hours for promotion or graduation.
65. Working a math problem that is important in your life, like figuring out how much you can spend on recreational activities such as movies after buying other itings you need.
66. Working on a math problem which seems less important in your life, such as "If $\mathrm{x}=$ ourstanding bills, and $\mathrm{y}=$ total income, calculate how much is left for recreational purposes."
$0 \quad 0$

0
0
0
67. Being given a set of addition problems ro solve on paper.
68. Being given a set of suburaction problems to solve on paper.
69. Being given a ser of multiplication problems to solve on paper.
70. Being given a set of division problems to solve on paper.
71. Picking up your math textbook to begin working on a homework assignment.
72. Being given a homework assignment of many difficuit math problems. which is due the next tirae the class meets.
73. Thinking about an upcoming math test one week before.

$$
\begin{array}{cccccc}
\text { How anxious ... } & \text { Not at } & \text { A } & \text { A fär } & \text { Very } \\
& \text { all } & \text { Little } & \text { amourt Much } & \text { much }
\end{array}
$$

74.Thinking about an upcoming math test one day before.	O	O	O	O	O	
75.Thinking about an upcoming math test one hour before.	O	O	O	O	O	
		O	O	O	O	O

77. Checking the time and figuring out whether or not you can stop in two more stores and stidl meet a friend at the exact time you said you would.
78. Waiting to get a math test returned on which you expected to do well.
0
0
0
0
0
79. Waiting to get a math test teturned on which you expected to do poorly.

0
0
0
o
0
80. Asking your math teacher after ciass about something you did not understand.
0

0
0
0
0
0
81. Realizing that you have to take a certain number of math classes to meet the
0 requirements for graduation.
82. Picking up a math textbook to begin a difficult reading assignment.

Q $\quad 0$
0
0
O
83. Being called on to answer a question in a math class on a topic you have spent some time studying.
84. Not knowing the fommia needed to solve a particular problem.
85. Receiving your final math grade on your report card.
86. Figuring out how much maierial you will0
0 need to do a project so tat you will waste as little as possibia.

How anxious.	Not at all	A little	A fair amount	Muci	Very much

87. Being responsible for collecting the dues for a club and keeping track of the amount received.
88. Opening a math or statistics book and
$0 \quad 0$
$0 \quad 0 \quad 0$ seeing a page full of problems.

| 89. Watching someone use a graph to explain | 0 | 0 | 0 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| something. | | | | | |

90. Listening to a lecture in a math class.
$0 \quad 0$
$0 \quad 0$
0
91. Being given a "pop" quiz in a math class.

0
0
0
$0 \quad 0$
92. Seeing a computer printout.

0

0
0
0
0.

0 math book.
94. Comparing the prices of two brands of soft drinks that are different sizes and

0
0
0
0 deciding which is cheaper.
95. Deciding bow much of a tip to leave in a restaurant after a meal.
96. Being asked to explain how you arrived at a parricular answer for a problem.
$0 \quad 0 \quad 0 \quad 0 \quad 0$
97. Adding up the results of a vote, such as for class or student body representative.
$0 \quad 0$
0
$0 \quad 0$
0
98. Acting as secretary, keeping track of the number of people signing up for an event.
0

0
0
0

Appendix B
Journal Topics

Nov. 6
I
I Algebra because
(express attitudes and feelings about algebra and explain why)

Nov. 8 Explain in your own words (in paragraph form) the steps that you would use to factor $x^{3}+7 x^{2}-18 x$. How do you know that you have factored it correctly?

Nov. 10 The worst math teacher that I ever had was
for your becaube _... (give reasons

Nov. 13 Tine square of a number minus three times that same number is four. Explain in your own words (in paragraph form) the geeps that you would use co solve this equation. How do you know that you have solved it correctly?

Nov. 15 What do you think your grade is in this class? Why? What do you think your final grade will be? Why?

Nov. 17 The best math Leacher I ever had was because ... (give reasons choice)

Nov. 20 The length of a rectangle is 5 cm more than its width. If the area of the rectangle is $150 \mathrm{~cm}^{2}$, find the dimensions of the rectangie.
Explain in your own words (in paragraph form) how you would solve this problem. How do you know that you have solved it correctly?

Nov. 22 The (best/worst) thing about this class is thing about this Elass is
(express your attitudes and feeling about this course)

Nov. 27
$\frac{2 x^{2}+3 x-5}{2 x^{2}+11 x+15}$
Explain in your own words how you would write this fraction in simplest terms.

Nov. 29 Why are you at Camden County College? Where do you see yourself in five years?

Dec. 1 Explain in your own words (in paragraph form) the steps you would use to solve the following problem.

$$
3 / x+4 / y
$$

Dec. 4 How do you think you dic on Friday's test? Were you prepared? What grade do you expect?

Dec. $6 \quad x-2 y>4$ Explain in your own worcs the geeps you would use to greph this inequality. Then graph it.

Dec. 8 Explain in your own words the difference betweer a consistent, and inconsistent, and a dependent system. (Include examples if you wish)

Dec. $11 \quad x+2 y=-2$
$3 x+2 y=-12$
We have discussed two ways ta solve this system. Solve this system both ways and explain which method is better and why.

Dec. 13 Find the square root of 64. Find the square root of -64 . Explain in your own words the difference between these two problems. Give answers for each.

Dec. 15 Express your attitudes and feelings about writing in the journals. Would you mind keeping joumals in your next math class? Do you think they helped?

Dec. If wist any suggestions you may have for improving this course.

Bibliography

References

Abel, Jean and Abel, Frederick. "Writing in the Mathematics Classroom." The Clearing House vol. 62 (1988): 155-159.

Anttonen, Ralph. "A Longitudinal study in Mathematics Attitude. " The Journal of Educhtional Research vol. 62 (1969): 467-471.

Bagley, Theread and Gallenberger, Catarina. "Assessing Students Dispositions: Using Journals to Inprove Studenta' Performance." The Mathematics Teacher voi. 85 (1992): 660-663.

Bespant, Kemeth. "Factors Associated with Types of Mathemetics Anxiety in College Studentes." Joumal for Research in Mathematics Education vol. 26 (1995): 327344.

Betz, Nancy. "Prevalence, Distribution and Correlates of Mach Anxiety in College Students." Journal of Counseling Psychology vol. 25 (1978): 441-448.

Borasi, Raphaella and Rose, Barbara. "Journal Writing and Mathematics Instruction." Educational Studies in Mathematice vol. 20 (1989): 347-365.

Brush, forelei. "Some Thoughts for Teachers on Mathematics Arxiety." Arithmetic Teacher vol. 29 (1981); 37-39.

Carnival, Rita. ${ }^{n E f f e c t ~ o f ~ S t r u c t u r e d ~ D i a l o g u e ~ J o u r n a l ~ W r i e i n g ~}$ on Attitude and Achievement in Algebra II." Masters Thesis, Glassboro State Callege, 1990.

Cherkas, Barry. "A Parsonal Essay in Math? Gatting to Kriow Your Students." Colleqe Teaching vol. 40 (1992): 83-86.

Cope, Charles. Math Anxiety and Math Avoidance in College Freshmen." Focus on Learning Froblems in mathematics vol. 10 (1988): 1-13.

Davison, Devid and Pearce, Daniel. "Using Writing Activities to Reinforce Methematics Instruction." Hrithmetic. Teacher vol. 35 (1988): 42-45.

Debronac, Meade. "Reduction of Mathenacics Anxiety: A Cognitive Behaviox Modification Approach." American Educational Research Association, 1982.

Desper, Douglas. "Mathematics Anxiety: Causes and Correlates, Treasments, and Frevention," Maseers Eroject, Indiana University, 1988.

Dew, Kathleen. "Mathematios Arwiety: Some Basic Issues," Tournal of Counseling Frychology vol. 30 (1983): 443-446.
Doad, Anne. "Insights from a Math Phobic." Mathematios Teacher vol 85 (1992): 296-296.

Dorofee, Mary Anne, "Journal Writing for College Stuciente in a Developmental Mathematics Class." Masters Thesis, Rowan College of New Jersey, 1995.

Eddy, Lise. "The Nature and Treatment of Mathematios Arxiety." Mastera Project, Indiana Џniversity, 1985.

Frankenstein, Marilyn, "Overcoming Math Ansiety by Learning About Learning." Mathematics and Computer Education vol. 18 (1984): 169-180.

Frary, Robert and Ling, Jeanne. "A Factar-Analyric study oí Methematics Arixiety." Educational and Psychological Measurement vol. 43 (1963): 985-993.

Gonguli, Aparna. "Writing to Learn Mathematics: Enhancement of Mathematical Understanding." DAI, University of Minmesota, 1991.

Gourgey, Amette. "Tutoring Developmental Mathematics: Overcoming Anxiety and Fostering Independent Learning." Journal of Developmental Education vol. 15 (1992): 10-12.

Greenwood, Jay. "My Anxieties About Math Anxiety." Methemarics Teacher Vol. 77 (1984): 662-663.

Grossman, Frances and Smith. Brenda. "Did You Say "Write" in Mathematice Glasa?" Journal of Developmental. Education vol. 17 (1993): 2-6.

Hunt, Glen. "Math Anxiety--Where Do We Go From Here?" Focus on Learninc Problems in Mathematics vol. 7 (1985): 29-40.

Hutter, Mindy. "A study to Decermine the Effectiveness of Various Factors in the Reduction of Machematics Anxiety." Masters Thesis, Rowan College of New Jersey, 1995.

Johnson, Marvin. "Writing in Mathemarics Classes: A Valuable Tool For teerring." Mathematics Teacher vol. 5 (1983): エエ7-119.

Kogeiman, Stamley. "Math Anxiety." American Educator: The Professional Journal of the American Eederation of Teachers vol. 5 (1981): 30-32.
Lasher, Ana. "Combatting Math Anxiety While Building Basic skills: There is Time for Both." Masters Project, New York, NY, 1981.

Lawrence, Sandra. "Joumal Writing as a Topl for Learning in College Classrooms." DAI, Harvard University, 1988.

Liabre, Maria. "Predicting Math Anxiety and Course Performance in College Women and Men." Journal of Counseling Fsychology vol. 32 (1985): 283-287.

Macteof, Susan. "Ideas in Practice: Writing the Book on Fractions." Tournal of Developmental Education vol. 16 (1992): 25-28.

Martinez, Joseph. "Preventing Math Anxiety: A Prescription." Academic Theraby vol. 23 (1987): 117-126.

Meece, Judich. "Predictors of Math Anxiety and its Infiuence on Young Adolescents' Course Enrollment Incentions and Performance in Mathematics." Journal of Educational paychology vol. 82 (1990): 60-70.

Morris, Jamet. "Math Anxiety: Teaching to Avoid It." Mathemtics Teacher vol. 74 (1981): 413-417.

Nehrgang, Cynthia and Peterson, Bruce. "Using writing to Eearn Mathematics." Mathemstics Teacher vol. 79 (1986): 461465.

National Council of Teachers of Mathematics. Curriculura and Evaluation Scandards for School Mathematics Reston, Virginia, 19e9.

National Council of Teachers of Mathemarics. Mathematics Arxiety Reston, Virginia, 1995.

Olson, James and Deming, Mary. "Dialogue Journals: Barometers for Assessing Growth in Developmental Learnexe." Journal of Developmental Education val. 18 (1994): 26-30.

Richardson, Frank and Suinn, Richard. "The Mathematics Anxiety Rating Scale: Paychometric Data." Journal of Counseling Esychology vol. 19 (1972): 551-554.

Robertson, Douglas. "Math Anxiaty--Causes and solutions." Masters Project, Minnesoṭa University, 1983.

Rounds, James and Hendel, Darwin. "Measurement and Dimensionality of Mãhematics anxiety." Journal_of Counseling Psychology vol. 27 (1980): 138-149.

Rowan, Thomas. "Communication in Mathematics." Brithmetic Teacher vol. 35 (1994): 18-22.

Schatzberg, Kathleen. "Dialogue Joumal Writing and the Study Habits and Attitudes of Underprepered College Stucients." DAI, Hofstra University, 1988.

Sherard, Wede. "Math Anxiety in the classroom. " Clearina House vol. 55 (1981): 106-110.

Shodahl, Susan and Diers, Cleon. "Math Anxiety in College gtudents: Sources and Solutions." Community College Review vol. 12 (1984): 32-36.

Skig̦a, Aurelia, "Reviewing an Old Subject: Math Arxiety-" Mathemetics Teacher vol. 83 (1990): 188-189.

Socha, Susan. "Math Class Logs." Mathematics Teacher vol. 82 (1989): 51I-513.

Stewart, Carolyri and Lucindia, Chance. "Making Connections: Journal Writing and the Professional Teaching Scandards." Mathematics Teacher vol. 88 (1995): 92-95.

Stewart, Carolyn. "Joumal Writing in Methematies Classrooms: A Practical Inquiry (Wxi气ing to Learn)." DAI, Memphis State University, 1992.

Taylor, Lyn and Brooks, Kathryf. "Building Math Confitence by Overcoming Math Anxiety. From Theory to Fracticm." Adult. Literacy and Easic Education vol. 10 (1986); 18-26.

Tobias, Sheila, "Math Anxiety: An Update, " Natiomal Academic Adyisory Association Journal vol. 10 (1990): 1990.

Tobias, Sheila. Math Mental Health: Going Eeyond Math Anxiety," Coliege Teaching vol. 39 (1991): 91-96.

Tobias, Sheila. Overcoming Math Anxiety. New York, 1987.
Tobias, Sheila, Succeed With Math: Every Studant's Guide to Conguering Math Anxiety. New York, 1987.

Turner, Judith. "Math Professors Turn to writing to Help Students Master Concepts of Calculus and Conbinatorics." Chronicle of Higher Education vol. 35 (1989): 3-IA.

Vaughn, Dottie. "A Study of the Incorporation of Journal Writing Structured Upon Bloom's Taxonomy Within College Algebra classes." DAI, University of Southern Mississippi, 1993.

Venne, Greg. "High School Students Write About Math." Engish品ourn

Witziela, Allan and Meece, Judith. "Math Anxiety in Elementary and Secondary school Students." Journal of Educational Psychology vol. 80 (1988): 210-216.

Wilde, Sandra, "Learning zo Writing About Machematics." Arithmetic Teacher vol. 30 (1991): 39-43.

Williams, Virginia. "Answers to Questions About Math Arxiety-" School Science and Mathematics vol. 8s (1968): 95-104.

Wright, Donald. "Combacting Math Anxiety While Building Basie Skills: There is Time for Both." Masters Froject, New York, 1981.

